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The process by which a classical 
dynamical system emerges as 
a sufficient approximation to 
a quantum dynamical system 

has been a major topic of discussion since 
the inception of quantum mechanics. The 
singular nature of the semiclassical limit 
lies at the center of this debate. Classical 
behavior cannot emerge as the smooth limit 
of a closed quantum system with a nonlinear 
Hamiltonian as these classical evolutions 
violate the unitary symmetry of quantum 
mechanics. Moreover, the symplectic 
geometry of a chaotic classical phase space 
generates infinitely fine structures which the 
uncertainty principle prevents a quantum 
dynamical system from tracking at late 
times. Thus the pathologies associated with 
the semiclassical limit are most dramatic in 
classically chaotic dynamical systems.

As all realistic systems interact with their 
environment, the modern approach to 
understanding the quantum-classical 
transition (QCT) relies on the open system 
paradigm. In this paradigm, the dynamical 
system is not considered in isolation but 
analyzed taking its external interactions into 
account. These environmental interactions 
are of two types depending on whether it 
is possible to make measurements on the 
environment or not. If the environment 
is in principle unobservable, then the 
system is described by the reduced density 
matrix obtained from the full system-
environment density matrix and tracing 
over the environment. If, on the other hand, 
certain measurements are possible on the 
environment, then the resulting reduced 
density matrix for the system depends on 
the results of these measurements. System 

evolution in this second case is therefore 
conditioned on the observation results. 
The conditioned system state, as it evolves, 
is said to define a quantum trajectory 
and inequalities governing the existence 
of a classical trajectory limit of quantum 
trajectories in continuously measured 
quantum systems have now been obtained. 
Since it yields effectively classical trajectories, 
we can call this pathway the strong limit of 
the quantum-classical transition.

If the environment is not amenable to 
observation, or if one decides to throw 
away the results of measurements on the 
environment—which amounts to the same 
thing—then the evolution of the reduced 
density matrix of the system is given by an 
unconditioned master equation. It is now 
no longer possible to obtain the classical 
trajectory limit as discussed above. One 
must now compare quantum and classical 
distributions (or, equivalently, the underlying 
dynamical averages) against each other: this 
constitutes the weak form of the quantum-
classical transition. Note that for any given 
situation, one can always obtain the weak 
from the strong form of the QCT, but the 
reverse is not possible.

Our purpose in this work is to obtain 
a semiclassical analysis of the QCT for 
bounded, classically chaotic open systems 
focusing on the regularization of the 
singular  ћ→ 0 limit via the weak form 
of the environmental interaction, rather 
than the state localization characteristic of 
measurement. Given a small, but finite, value 
of ћ, we aim to establish the existence of a 
timescale beyond which the dynamics of 
open quantum and classical systems becomes 
statistically equivalent. Note that this is quite 
different from the strong form of the QCT, 
indeed the conditions we obtain cannot be 
easily interpreted in that language.

The basic results for the weak form of the 
QCT are the following: for a bounded 
open system with a classically chaotic 
Hamiltonian, the QCT is achieved by two 
parallel processes. First, the semiclassical 
approximation for quantum dynamics, which 
breaks down for classically chaotic systems 
due to overwhelming nonlocal interference, 
is recovered as the environmental 
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interaction filters these effects. Second, the 
environmental noise restricts the foliation of 
the unstable manifold, the set of points which 
approach a hyperbolic point in reverse time, 
allowing the semiclassical wavefunction to 
track this modified classical geometry (see 
Fig. 1). Even though establishing these results 
requires some analysis, the final inequality is 
of a very simple type and can be written as a 
semiclassical quantization condition where 
the areal scale in phase space is set by the 
diffusion-averaged classical dynamics [1].

It is worthwhile to emphasize the topological 
aspects of our results. It has been known 
for some time that in certain systems, the 
evolution for classical and quantum averages 
is very close, while for other systems, it is not. 
At least for the case of chaotic systems, we 
have strong evidence that compactness of the 
phase space is a precondition for the weak 
form of the QCT. This issue is now under 
investigation.

[1] B. Greenbaum, S. Habib, K. Shizume, and 
B. Sundaram, quant-ph/0401174 (2004).
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Figure 1— 
The classical manifold 
structure superimposed 
on the quantum 
Wigner function. This 
structure is not visible 
in the evolution of 
the isolated system—
classically or quantum 
mechanically—however, 
the diffusive effect 
of coupling to an 
environment (with or 
without an associated 
measurement 
process) results in 
the appearance of 
the structure in both 
classical and quantum 
evolutions. This happens 
when the inequalities 
mentioned in the text 
are satisfied.
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